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SUMMARY 
A review of our solution techniques for the vorticity-streamfunction formulation of two-dimensional 
incompressible flows is presented. While both the viscous and inviscid cases are considered, the derivation of 
the proper finite element formulations for multiply connected domains is emphasized. In all formulations 
associated with the vorticity transport equation, the streamline upwind/Petrov-Galerkin method is used. 
The adaptive implicit-explicit and grouped element-by-element solution strategies are employed to 
maximize the computational efficiency. The solutions obtained in all test cases compare well with solutions 
from previously published investigations. The convergence and benchmark studies performed in this paper 
show that the solution techniques presented are accurate, reliable and efficient. 
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1. INTRODUCTION 

In this paper we present a review of our solution techniques for the vorticity-streamfunction 
formulation of two-dimensional incompressible flows. We consider both the viscous and inviscid 
cases. 

The advantages in using the vorticity-streamfunction formulation for two-dimensional com- 
putations are well known. The difficulties in this formulation are associated with the convection 
term in the vorticity transport equation, lack of boundary condition for the vorticity at no-slip 
boundaries, and determination of the value of the streamfunction at the internal boundaries for 
multiply connected domains. 

For viscous flow problems, at no-slip boundaries corresponding to solid surfaces the variational 
equations needed to determine the value of the vorticity at such boundaries can be derived from 
the Poisson equation for the streamfunction.' This subject was also addressed in References 2-5. 
In problems involving multiply connected domains, an additional variational equation is needed 
for each internal boundary to determine the value of the streamfunction at that boundary. These 
additional equations can be derived by integrating the equation of motion in the velocity-pressue 
formulation along each internal boundary and combining the result with the variational 
formulation of the vorticity transport equation.' Formulations of this type can also be found, for 
steady problems, in References 6-8. 

For inviscid flows there is no need for boundary conditions for the vorticity at solid surfaces. 
However, in the case of multiply connected domains the value of the streamfunction at the internal 
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boundaries must still be determined as part of the overall solution. The additional equations 
needed can, again, be derived by integrating the equation of motion in the velocity-pressure 
formulation along each internal boundary and combining the result with the variational 
formulation of the Poisson equation for the streamfunction.’ Of course, whether the flow is 
viscous or inviscid, these difficulties related to solid boundaries do not exist for computations 
based on velocity-pressure formulations.10. 

In all finite element formulations corresponding to the vorticity transport equation we employ 
the streamline upwind/Petrov-Galerkin (SUPG) method. The vorticity transport equation 
involves convection terms which become dominant as the Reynolds number increases. It is well 
known that, owing to such dominant convection terms, especially in the presence of sharp layers in 
the solution, regular (Bubnov-) Galerkin finite element and classical centred finite difference 
methods lead to spurious oscillations in the solution. The SUPG scheme minimizes such 
oscillations, yet introduces minimal numerical diffusion. Schemes of this type have been 
successfully applied to various fluid dynamics and convection-diffusion-reaction problems. ’ *, ’ 

In the formulations described above, implicit time integration of the spatially discretized 
vorticity transport equation and spatial discretization of the Poisson equation for the streamfunc- 
tion lead to linear equation systems with large global matrices. For most problems of practical 
interest, management of these large matrices places a heavy demand on the CPU time and 
memory resources of the computational environment. Sometimes this demand can become too 
heavy even for the largest and fastest computers of our time. The two alternative solution 
strategies reviewed in this paper are the adaptive implicit+xplicit (AIE) solution scheme and the 
grouped element-by-element (GEBE) iteration method. 

The implicit+xplicit algorithm proposed by Hughes and Liu14 for solid mechanics and heat 
transfer problems involves static allocation of the implicit and explicit elements based on stability 
and accuracy considerations. In Tezduyar and Liou’ the same static approach was applied to 
fluid mechanics problems and the AIE scheme was presented in its preliminary stage. 

The AIE method is based on dynamic grouping of the elements into the implicit and explicit 
subsets as dictated by the element level stability and accuracy considerations. For this purpose the 
algorithm continuously monitors, for all elements, the Courant number and the level of variations 
in the solution. In this approach we can have implicit elements only where they are needed; 
elsewhere in the domain computations can be performed explicitly, and this of course results in 
substantial reductions in the computational cost involved. 

The dynamic grouping involved in the AIE scheme does not have to be based on the distinction 
between implicitly and explicitly treated elements. The concept can be extended to other cases in 
which the letters ‘I’ and ‘ E  in ‘AIE refer to any two procedures; and the reason for favouring one 
procedure over another could be based on any factor, such as the cost efficiency, the type of spatial 
or temporal discretizations, the differential equations used for modelling, etc. Examples of such 
AIE approaches can be found in Reference 16. 

The GEBE method is a variation of the element-by-element (EBE) iteration method and is 
based on arrangement of the elements into groups with no inter-element coupling within each 
group. In the EBE iteration method the preconditioning matrix is chosen to be sequential product 
of the element level matrices. Consequently the need for the formation, storage and factorization 
of large global matrices is eliminated. Element level matrices can be either stored or recomputed. 
In the case where the element level matrices are stored, the storage need is still only linearly 
proportional to the number of elements. The EBE implementations in computational fluid 
dynamics were first reported, in the context of compressible Euler equations, by Hughes et al.” 
Applications to convection-diffusion equations and incompressible flows can be seen in Tezduyar 
et al.’* Hughes and F e r e n c ~ ’ ~  proposed EBE schemes which are based on Crout and 
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Gauss-Seidel factorizations. The EBE method was also employed in conjunction with the 
GMRES method” by Hughes and Shakib.’l 

The GEBE method has some common ground with the operator-splitting and domain 
decomposition methodsz2 The GEBE preconditioner is a sequential product of the element group 
matrices with the condition that no two elements in the same group can be adjacent. This grouping 
is achieved by a simple algorithm which is applicable to arbitrary meshes.23 In this form, 
vectorization and parallel implementation of the EBE method become very clear. To minimize the 
overhead associated with synchronization in parallel computations we try to minimize the 
number of groups. 

The governing equations and the finite element formulation are given in Sections 2 and 3. The 
AIE and GEBE methods are described in Sections 4 and 5. We present our numerical tests and 
conclusions in Sections 6 and 7. 

2. VORTICITY-STREAMFUNCTION FORMULATION OF TWO-DIMENSIONAL 
INCOMPRESSIBLE FLOWS 

Consider a two-dimensional spatial domain R and a time interval (0, T )  with the spatial and 
temporal co-ordinates denoted by x €0 and t E [O, TI,  where a superposed bar indicates the set 
closure. The boundary r of the domain R consists of an external boundary To and q internal 
boundaries denoted by rk, k =  1,2,. . . , q,  i.e. 

4 

k = O  
r= u rk. 

We start with the following incompressible flow equations: 

au 1 
- + u Vu + -Vp- vVzu=O on R x (0, T), 
at P 

V-u=O on Rx(O,T) ,  (3) 
where u, p ,  p and v are the velocity, pressure, density and kinematic viscosity respectively. The 
incompressibility constraint (3) can be satisfied automatically by defining a streamfunction I,$ such 
that 

A convection-diffusion equation for the scalar vorticity 

w = - - L  auz au 
ax, ax, 

can be used in place of equation (2); this equation for the vorticity is obtained by taking the curl 
of (2): 

(6) 
am 
at 
-++L~.Vw-vVzo=O onRx(0 ,T) .  

Furthermore, by eliminating u between equations (4) and ( 5 )  we can obtain a Poisson equation 
involving the vorticity and the streamfunction: 
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Remarks 

1 .  In the case of inviscid flows equation (6) reduces to a hyperbolic equation. 
2. For viscous flows the internal boundaries (rk, k = 1 , 2 , .  . . , q )  represent obstacles with no- 

slip surfaces, whereas for inviscid flows these boundaries represent impermeable obstacles 
with friction-free surfaces. 

On the boundaries the tangential and normal components of the velocity can be expressed as 
the normal and tangential derivatives of the streamfunction: 

where t and n are the unit tangential and normal vectors. 

the type of boundary condition specified for $: 
We assume that the external boundary To admits the following decomposition with respect to 

ro=r,ur,urR. (94 
0 = r, n r,, (9b) 

r,,=riurgurz, (W 
0 = ri n r,, (lob) 

On the basis of these decompositions, the boundary conditions for the external boundary are 
summarized in Table I. 

Several comments can be made about these boundary conditions, and the interested reader can 
find those in References 1 and 9. 

We will assume that at all internal boundaries the normal component of the velocity is zero, i.e. 

0 = r, n r r ,  0 = r, n rB. 
A similar decomposition can be made with respect to w: 

/zr = r, n l-2, 0 = I-,- n Ti .  

Furthermore, we will assume that for viscous flows the tangential velocity at an internal boundary 
is known; therefore we can write 

Table I. Boundary conditions for the ex- 
ternal boundary To 

Boundary Condition 

* This condition vanishes for inviscid flows. 
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where ( u ~ ) ~  is the given tangential velocity for the internal boundary k. 
From equation (11) we know that the value of the streamfunction is invariant along each 

internal boundary; however, we do not know what that value is and therefore we need to 
determine it as part of the overall solution. Whether the flow is viscous or inviscid, to determine 
such unknown values of the streamfunction we first need to write equation (2) along each internal 
boundary, i.e. 

au, au, 1 a p  au 
- + + u , - + - - + v - = O  on rkx(o,T), k=l ,2 , .  . . , q .  
at 87 pi37 an (13) 

lrk u,dr  + :( 1.: + :)dT + v Irk Z d T  = 0 on (0, T) ,  k =  1,2,. . . ,q. (14) 

Assuming that 4.: + p/p is single-valued, the second integral on the left-hand side of equation (14) 
vanishes; consequently we get 

From this equation we can obtain the additional equation needed to determine the unknown 
value of the streamfunction at an internal boundary. For viscous flows, assuming that (u,)k is 
invariant along r,, equation (15) leads to 

where sk is the length of the boundary rk. For inuiscidflows, from (15) we get 

u,dT = (constant), on (0, T), k =  1,2,. . . ,4. (17) 
I r k  

For time-dependent problems the constants in (1 7) are evaluated from the given initial condition, 
whereas for steady state problems they must be given. 

Finally, the initial condition for this problem consists of specification of the initial distribution 
of the vorticity, i.e. 

o(x, 0) = wo(x) on a,. (18) 

where wo(x) is a given function, 

3. THE FINITE ELEMENT FORMULATION 

Let 8 denote the set of all elements resulting from the finite element discretization of the 
computational domain Q into subdomains sz', e =  1,2,. . . ,n,,,  such that 

e =  1 e = l  

where a,, is the number of elements. Let re denote the boundary of zz'. Let ag and Bk, 
k = 1,2,. . . , q, denote the set of elements adjacent to the boundaries r, and rk, k = 1,2,. . . , q, i.e. 

&g={ne~ne~8, renr, # 0}, (20) 
&k = {ne 1 ~ ~ ~ 8 ,  re n r; z 01, (21) k = 1,2,. . . , 4. 
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We associate to 8 the following finite-dimensional space: 

H ' h  = { p 1 4 h  E CO(Q), @I*. E P'VR"€ 8},  

The solution spaces for the streamfunction and vorticity, which are respectively denoted by Sh and 
fh, are defined as follows: 

~ ~ = ( * ~ ~ * ~ ~ ~ ~ ~ , l ~ l ~ = ~ o n r , , l C l ~ = ~ o n r ~ , a * ~ / a ~  e O o n r k , k = l , 2  , . . . ,  q} ,  (23) 

S " h = { ~ h l ~ h ~ ~ l h , ~ h = j i  on r;}. (24) 

The weighting function spaces needed are listed below: 

(29) 
awh 

~ : , = { w ~ I w ~ E V : , ~  G o o n  rk}, k = l , 2 , .  . . ,q. 

The finite element formulation associated with equation (6) is given as follows: find lLheSh and 
uh E fh such that 

where ah is a C-'(n) Petrou-Galerkin supplement to the weighting function wh. In this formulation 
the terms inside '( )' exist only for inviscid flows. 

Remarks 

1. The term a h  needs to act only in the element interiors and therefore is allowed to be 
discontinuous across element boundaries. Setting this term to zero reduces the formulation 
to a (Bubnov-) Galerkin one. 

2. Various Petrov-Galerkin procedures, particularly those based on the streamline 
upwind/Petrov-Galerkin (SUPG) formulations, have been successfully applied to a wide 
range of fluid flow problems. For examples and discussion on the subject see References 12 
and 24. 

3. For the precise definition of ah we refer the interested reader to References 1 and 6. 

The discrete variational formulation association with (7) is stated as follows: find lLh E Sh and 
ah E fh such that 

snVwh*VtjhdQ- whAdr V W ~ E V ~  (31) 
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and 

where the terms inside ‘< >>’ exist only for viscous flows. 
For viscous flows, to derive the additional variational formulations needed to determine the 

values of the streamfunction at the internal boundaries, we use equation (6) and the function 
spaces given by (29). These variational formulations are stated as follows: find $h E Sh and mh E fh 
such that 

- at + VL$”Bwh)dR+jR vVwh.VohdR+ e e 8 k  c Jne6h($+V1$h.Voh-vVz~h)dR 

Because wh is invariant along r k ,  the right-hand side of (33) can be obtained from (16); therefore we 
get 

= - W h ( r k ) S k T  V W ~ E V ~ R ,  k=l ,2 , .  . . , 4 .  (34) 

For inviscid flows, the additional variational formulations needed are obtained by using the 
same function space given by (29) but in conjunction with equation (7). This leads to the following 
finite element formulation: find t,hh E Sh and oh E s”” such that 

jR Vwh * Vl(lh dR - V W ~ E  ViR, k=l ,2 , .  . . , 4 .  (35) 

Again because wh is invariant along r k  we can rewrite (35) as 
r r r 

and by using (17) we get 
r r 

J V W ~ * V $ ~ ~ R - J  w”ohdR=wh(rk)(constant), VW~EV:!, k=l ,2 , .  . . ,q. (37) 
n n 

Now we have the complete set of equations needed to solve for all the unknowns of the problem 
whether the flow is viscous or inviscid. For further details of the spatial discretization and the 
description of the temporal discretization procedure see References 1 and 9. 

The fully discretized equations can be solved in various ways. In this work we solve them 
either in their fully coupled form or by employing a block iteration technique. Solving them in 
their fully coupled form is quite straightforward and needs no explanation. The block iteration 
method, which is described in detail in Reference 1, requires, at every iteration, solution of mainly 
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two linear equation systems. These equation systems, after hiding all the subscripts and 
superscripts denoting the time step and iteration count, can be written as follows: 

M A v  = R, (38) 

K d = F ,  (39) 
where the vectors v and d contain the unknown nodal values of the vorticity and streamfunction 
respectively. The matrices M and K are formed by assembling their element level contributors, i.e. 

M =  1 Me, 
e ~ 8  

K =  1 K'. 
e e 8  

The right-hand-side vectors R and F, which are known at a given iteration step, are also formed by 
the assembly of their element level contributors. 

Remarks 

1. The matrix Me has the same dimensions as the global matrix M but only very few non-zero 
entries (e.g. 4 x 4 for a two-dimensional quadrilateral element with a scalar unknown). 

2. The matrix K is symmetric and positive-definite. A particular version of the Petrov-Galerkin 
method employed results in M also being symmetric and positive-definite; however, we 
will assume that in general M is not symmetric and positive-definite. 

4. THE ADAPTIVE IMPLICIT-EXPLICIT (AIE) METHOD 

Let 8, and 8, be the subsets of 8 corresponding to the implicit and explicit elements, respectively, 
such that 

b=bP, u 8,, 0 = 81 n 8,. (41) 

Consequently, from equation (40a) we get 

M =  M'+ c M'. 
e e d ,  ' € 8 ,  

(42) 

The AIE schemeis based on modifying M by replacing Me( V e E gE) with its lumped mass matrix 
part, 

M =  1 M +  c Mt 
eeB, eeB, 

(43) 

The grouping given by (41) is achieved dynamically (adaptively) on the basis of stability and 
accuracy considerations. 

The stability criterion is in terms of the element Courant number CAt which is defined as 

where h is the element length.' Any element with its Courant number greater than the stability 
limit of the explicit method should belong to the implicit group 
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For the accuracy criterion we use a quantity which we expect to be a fair representative of the 
dimensionless wave number. O n  the basis of the observations from our numerical tests we select 
the accuracy criterion as 

0‘ 

(Js 
0% = T, (454 

where 

Here 4 is a generic symbol for the dependent variable, whilef, andf, are the fluxes corresponding 
to directions x1 and x,. The dimensionless element level ‘jump’j‘(4) is defined as 

where a is the element node number and 4: is the value of the dependent variable at node a of the 
element e. The instantaneous maximum and minimum values of 4 are denoted by 4,,,ax and 4min. 
This definition ofF(4) represents the magnitude of the variation of the solution across an element. 
The elements with 0% greater than a predetermined value belong to group 8,. 

Borrowing from the adaptive mesh refinement  technique^,,^ we also experimented with the 
accuracy indicator in terms of the 9,-norm of the residual r :  

with 

Note that all expressions are based on the ‘previous solution’. The ‘previous solution’ can come 
from the previous time step, non-linear iteration or pseudo-time-step iteration, whichever is 
appropriate. 

The implementation of the AIE scheme is straightforward. A global search is performed over the 
entire set of elements. With this search, on the basis of the two critical parameters given by (44) and 
(45a) (or (46a)), the elements are grouped into the subsets 8, and 8,. Compared to having all the 
elements treated implicitly, this grouping results in substantial savings in CPU time and memory. 

For the solution of (39) we use a preconditioned conjugate gradient method.26 In conjunction 
with the AIE scheme employed for equation (38), we define our preconditioning matrix P to be 

P =  1 K“ + diag(K‘), 
e e l ,  e E l ,  

(47) 

where K‘ is the element contribution matrix of K. If gE = 0 then P= K, and the solution technique 
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becomes a direct one. If 8, = 0 then the method becomes a Jacobi iteration.26 Other definitions 
for P are of course possible; the one given by (47) is simple to implement and reflects the 
expectation that there may be a correlation between the solution procedures for (38) and (39). 

Remarks 

It is important to note that the grouping does not have to be only with respect to implicit and 
explicit treatments. In the acronym ‘AIE, the letter ‘I’ can refer to the ‘I-elements’ subject to 
some ‘I-procedure’, while the letter ‘E’ can refer to the ‘E-elements’ subject to some other 
‘E-procedure’. We can employ the ‘I-procedure’ where it is neededldesired and the 
‘E-procedure’ elsewhere. For further discussions and comments as well as other possible 
‘I/E procedures’ see Reference 16. 
In the AIE approach one can have a high degree of refinement throughout the mesh and raise 
the implicit flag only for those elements which need to be treated implicitly. 
The savings in CPU time and memory can be maximized by performing, as often as desired, 
an equation renumbering at the implicit zones to obtain optimal bandwidths. Bandwidth 
optimizers are already available for finite element applications, especially in the area of 
structural mechanics. 

5. THE GROUPED ELEMENT-BY-ELEMENT (GEBE) ITERATION METHOD 

The linear equation systems (38) and (39) are both in the form 

A x = b .  

The iterative solution techniques used to solve (48) are described in this section. 

Element grouping 

The elements are arranged into ‘parallelizable’ groups in such a way that 
NPa 

8 = u 6 K ,  
K =  1 

and such that no two elements within a group are neighbours (being neighbours is defined as 
having at least one common node). The number of such groups is denoted by Npg. On the basis of 
this grouping, the matrix A can be written as 

where the ‘group matrices’ are defined as 

A , =  1 A“, K = 1,2,. . . ,Npg. 
eeB, 

Remarks 

1. Because there is no inter-element coupling within each group, computations performed in 
element-by-element fashion (such as operations performed on a group matrix) do not depend 
on the ordering of the elements. 
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2. In parallel computations, before we can start with a new element group we first have to finish 
with the one that we have already started with. To minimize the overhead associated with 
this synchronization, we try to minimize the number of groups. A simple element grouping 
algorithm which serves this purpose is described in Reference 23. 

3. To increase the vector efficiency of the computations performed, within each group the 
elements are processed in packets of ncp elements, where nep is the optimum packet size for a 
given vector environment (e.g. 64). 

GEBE-preconditioned iterative solution method 

Equation (48) is solved with a preconditioned iteration method which is built on solving 

P Ay,,, =rm (52) 

r,,, = b- Ax,,,. (53) 

for Ay,,,, where P is the preconditioning matrix and r, is the residual vector defined as 

The form of the scaling matrix W depends on the properties of A. If A is symmetric and positive- 
definite, one obvious choice is 

W = diag A. (544 
The alternative choice 

W = lump M 

gives a symmetric and positive-definite scaling matrix even if A is not so. Although the mass matrix 
comes up usually in the context of time-dependent problems, for scaling purposes it can be 
introduced also in the context of steady-state problems. In reality, the context in which we use this 
scaling matrix does not require it to be symmetric and positive-definite; it is sufficient that W is 
symmetric, and of course non-singular. 

Two-pass GEBE preconditioner (2P-GEBE) 

In this method the preconditioning matrix is defined as 
1 

P =  fi (EKW-l) W n (W-’EK), 
K = l  K=N, ,  

(55 )  

where 

EK=W+$BK, K=1,2,. . . ,NPg, (56) 

B,=AK-W,, K=l,2, .  . . ,NPg, (574 

BK=AK, K = 1,2,. . . , Npg. (57b) 

with 

or 

The choice given by (57a) leads to ‘Winget regularization’. For comments on the relationship 
between the GEBE and three regular EBE methods see Reference 23. 

In the next two subsections we describe the GEBE versions of the Crout- and Gauss-Seidel- 
factorization-based EBE preconditioners.” 
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Crout-factorization-based GEBE preconditioner (Crout-GEBE) 

Based on the Crout factorization 

W+BK=LKDKUK, K=1,2,. . . ,NPB, 

the preconditioning matrix is defined as 

Gauss-Seidel-factorization-based GEBE preconditioner (GS-GEBE) 

Consider the following lower triangulardiagonal-upper triangular decomposition: 

A , = A i + A ; + A ; ,  K=1,2,. . . , N , , .  

Based on this decomposition the preconditioning matrix is given as 

Updating the vector x, 

gradient method with the preconditioners as defined in the previous subsections. 
If the matrix A is symmetric and positive-definite we employ a preconditioned conjugate 

If the matrix A is not symmetric and positive-definite then the vector x, is updated as follows: 

X m +  1 =xm+sAYm, (62) 

where the search parameter s is determined by the formula 

which is derived by minimizing ( 1  rm+ ( 1 ’  with respect to s. 

vectorization and parallel processing of these algorithms see Reference 23. 
For further details and discussions on the GEBE algorithms as well as comments on the 

6. NUMERICAL EXAMPLES 

We have tested the fully coupled and block iterative forms of the formulation together with the 
AIE and GEBE methods. 

Convergence and benchmark studies 

Numerous researchers have performed computations for the driven cavity flow problem. We 
chose this problem for our convergence (based on successive mesh refinement) and benchmark 
(based on the CPU time and memory requirement) studies. In this test the lid of the cavity has unit 
velocity; based on this velocity and the dimension of the cavity the Reynolds number is 400. 

In the convergence study uniform meshes were used; the number of elements are 8 x 8,16 x 16, 
32 x 32,64 x 64 and 128 x 128. We employed the GEBE solution method in conjunction with the 
block iteration form. The steady-state solution obtained with a given mesh was supplied (by 
interpolation) as the initial condition for the mesh with one level of higher refinement. Figure 1 
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Figure 1. Driven cavity flow at Reynolds number 400: convergence test based on successive mesh refinement; steady state 
value of u, along the vertical centreline 

shows the steady-state value of u1 along the vertical centre line. As far as this particular quantity is 
concerned, it is clear that the method converges very rapidly; the values for the 16 x 16 mesh are 
sufficiently close to those for the 128 x 128 mesh. Table11 shows the maximum value of the 
streamfunction obtained with various meshes, together with the values found in the literature. 

For the benchmark study based on the CPU time and memory requirements, we compared the 
fully coupled, block iteration, AIE block iteration and GEBE block iteration formulations. We 
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Figure 2. Driven cavity flow at Reynolds number 400: solution obtained by the AIE method; vorticity, distribution of the 
implicit elements, and streamfunction at t=2.34, 4.69, 7.03 and 9.38 
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Figure 3. Driven cavity flow at Reynolds number 400: solution obtained by the AIE method; vorticity, distribution of the 
implicit elements, and streamfunction at t = 11.72, 14.06, 16.41 and 18.75 

velocity. At the downstream boundary the normal derivative of both the vorticity and streamfunc- 
tion is specified to be zero. The Reynolds number based on the freestream velocity and the cylinder 
diameter is 100. 

The symmetric solutions at t = 5 and t = 50 are shown in Figures 5 and 6. The steady-state 
solution is achieved long before t = 50. At t = 5 1, to break the symmetry an external perturbation 
is applied for a duration of only one time step. Figure 7 shows the solution at t=80, at which 
time the asymmetry becomes quite visible. The solutions at t = 100 and t=200 are shown in 
Figures 8 and 9. 

Flow past two $at plates 

Analysis of wakes behind flat plates has various applications, including the wake of a ribbon 
parachute and airflow through the slotted dive brakes of an aircraft.33* 34 The problem of wake 
interference behind two flat plates was examined experimentally and numerically by Hayashi 
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Figure 4. Flow past a bank of cylinders at Reynolds number 100: the finite element mesh with 4800 elements and 
4919 nodes 

Figure 5. Flow past a bank of cylinders at Reynolds number 100: vorticity and streamfunction at t = 5 



532 T. E. TEZDUYAR ET AL. 

I --z. I 
I 

7 

Figure 6. Flow past a bank of cylinders at Reynolds number 100: vorticity and streamfunction at t = 50 

Figure 7. Flow past a bank of cylinders at Reynolds number 100: vorticity and streamfunction at t=80 
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Figure 8. Flow past a bank of cylinders at Reynolds number 100: vorticity and streamfunction at t= 100 

Figure 9. Flow past a bank of cylinders at Reynolds number 100: vorticity and streamfunction at t=200 

et ~ l . ~ ’ .  36 The numerical results presented in References 35 and 36 are obtained by finite difference 
calculations. The experimental flow visualizations performed by Higuchi et ~ 1 . ~ ~ .  34 include the 
single- and double-plate configurations at relatively high Reynolds numbers. We borrowed two 
flow visualization pictures (see Figure 10) from Reference 33 only to give an idea about the 
physical problem. 
In our test we consider a two-plate unit. The length of each plate is 1.0 and the gap between the 

plates is 05.  The plate thickness is 0.25. A uniform freestream velocity with a magnitude of 1.0 
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Figure 10. Flow visualizations in water for a single plate and for two plates (with gap 1.0) at Reynolds number 1400 
(courtesy of H. Higuchi and H. J. Kim3’) 
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Figure 11. Flow past two plates at Reynolds number 50: the finite element mesh with 4374 elements and 4534 nodes 

Figure 12. Flow past two plates at Reynolds number 50: vorticity and streamfunction at t =  10.0 
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I 

Figure 13. Flow past two plates at Reynolds number 50: vorticity and streamfunction at t =  12.5 

L 
Figure 14. Flow past two plates at Reynolds number 5 0  vorticity and streamfunction at t = 145.0 
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Figure 15. Flow past two plates at Reynolds number 5 0  vorticity and streamfunction at t = 1475 

results in a Reynolds number of 50 based on the gap length. A non-uniform mesh consisting of 
4374 elements and 4534 nodes was employed (see Figure 11). 

Initially the flowfield develops symmetrically as shown in Figure 12. Transition to an 
asymmetric flow pattern occurs at t !z 12. Following this symmetry breaking, vortex shedding 
occurs (see Figures 13-1 5). These preliminary results compare well qualitatively with the results 
obtained by Hayashi et on an 11,528-node grid. 

7. CONCLUDING REMARKS 

We have presented a review of our solution techniques for the vorticity-streamfunction 
formulation of two-dimensional incompressible flows. We have emphasized the derivation of the 
proper finite element formulations for multiply connected domains. These formulations cover 
both the viscous and inviscid cases. In all finite element formulations corresponding to the 
vorticity transport equation we employed the streamline upwind/Petrov-Galerkin procedure. 
This procedure minimizes the spurious oscillations encountered in convection-dominated prob- 
lems, yet introduces minimal numerical diffusion. 

To make our computations efficient we use two solution strategies: the adaptive 
implicit-explicit (AIE) scheme and the grouped element-by-element (GEBE) iteration method. 
Such strategies become crucial for large-scale computations. 

We have performed several numerical tests. In all cases the results obtained compared well with 
the previously published results. The convergence study (based on successive mesh refinement) for 
one of the test problems shows that the formulations presented are accurate and reliable. The 
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benchmark computations indicate that the AIE and GEBE strategies result in substantial 
reductions in the computational cost involved. 
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